Enroll No.

Shree Manibhai Virani and Smt. Navalben Virani Science College (Autonomous)

Affiliated to Saurashtra University, Rajkot

SEMESTER END EXAMINATION NOVEMBER – 2016

16PMTCC02 - TOPOLOGY - I

Duration of Exam – 3 hrs	Semester – I	Max. Marks – 70
	Part A $(5x^2 = 10 \text{ marks})$	

Answer ALL questions

- 1. If $X = \{1, 2, 3, 4, 5\}$ and $\boldsymbol{\mathcal{I}} = \{\emptyset, X, \{1, 2, 3\}, \{2, 3, 5\}, \{1, 5\}\}$ then verify weather $(X, \boldsymbol{\mathcal{I}})$ is a topological space or not..
- 2. Define: (i) Order Topology (ii) Dictionary Order Relation.
- 3. If \mathbb{Z}_+ is the set of all the positive integers then $\mathbb{Z}_+ = ?$ and $\mathbb{Z}_+ = ?$ Justify.?
- 4. Define: (i) Continuous Function (ii) Homeomorphism (w. r. t topological spaces)
- 5. Define: (i) T_3 space (ii) T_4 space.

<u>Part B</u> (5X5 = 25 marks)

Answer <u>ALL</u> questions

6a. Define: (i) Topology.
(ii) Standard topology on R.
Let X be a set, Let S be a basis for a topology ‡ on X. Then prove that ‡ equals the collection of all unions of elements of S.

OR

6b. If $\{\ddagger_{r} / r \in I\}$ is a colloction of topologies on X. then show that $\bigcap_{r \in I} \ddagger_{r}$ is a topology on X. Is $\bigcup_{r \in I} \ddagger_{r}$ a topology on X? Justify your answer?

7a. Let (X, \mathcal{J}) be a topological space. Let $Y \subset X$, B be a basis for topology \mathcal{J} of X then prove that the collection $\mathcal{B}_Y = \{B \mid Y \mid B \in \mathcal{B}\}$ is a basis for the subspace topology \mathcal{J}_Y on the set Y.

OR

- 7b. Define: Open Rays and Closed Rays. Prove that every order topology is a Hausdorff topology.
- 8a. Define: Neighbourhood of a point. Let A be a subset of the topological space X, then $x \in \overline{A}$ if and only if every open set U containing x intersects A.

- 8b. Let (X, \mathcal{J}) be a topological space with topology \mathcal{J} on it and let \mathcal{B} be a basis for the topology \mathcal{J} on X and let $A \subset X$ then prove that $x \in \overline{A} \Leftrightarrow$ for every $B \in \mathcal{B}$ with $x \in B$, $B \cap A \neq \emptyset$.
- 9a Let f(X, d) be a metric space, let $B_d(x, \cdot) = \{y \in X / d(x,y) < \cdot\}$ denote the - ball at the point $x \in X$, Let $\mathcal{B} = \{ B_d(x, \cdot) / x \in X, \cdot > 0 \}$ then prove that \mathcal{B} is a basis for a topology.

OR

- 9b. Let (X, \mathcal{J}_X) and (Y, \mathcal{J}_Y) be topological spaces, Let f: $(X, \mathcal{J}_X) \rightarrow (Y, \mathcal{J}_Y)$ be a function of topological spaces, then prove that f is continuous function if and only if for each $x \in X$ and each neighbourhood V of f(x), there is a neighbourhood U of x such that $f(U) \subset V$.
- 10a. Define: Hausdorff Space Prove that a subspace of T_2 -space is a T_2 -space.

OR

10b. Define: T₁ - space. If X is a Hausdorff space then prove that a sequence of points of X converges to at most one point of X.

<u>Part C</u> (5X7 = 35 marks)

Answer ALL questions

11a. Let (X, \mathcal{F}) be a topological space. Suppose that \mathcal{C} is <u>a</u> collection of open sets of X such that for each open set U of X and for each $x \in U$ there is an element C of \mathcal{C} such that $x \in C \subset U$, then **prove that** \mathcal{C} is a basis for the topology of X.

OR

- 11b. Let $\boldsymbol{\mathcal{B}}$ and $\boldsymbol{\mathcal{B}}'$ be basis for the topologies of $\boldsymbol{\mathcal{T}}$ and $\boldsymbol{\mathcal{T}}'$ respectively on X, then **prove that** $\boldsymbol{\mathcal{T}} \subseteq \boldsymbol{\mathcal{T}}$ 'implies for each $x \in X$ and each basis element $B \in \boldsymbol{\mathcal{B}}$ containing x, there is a basis element $B' \in \boldsymbol{\mathcal{B}}$ ' such that $x \in B' \subset B$.
- (i) Explain and discuss the order topology on the set Z⁺.
 (ii) Let (X, *I*) be a topological space, and Y be a subspace of X, if V ⊂ Y is open in Y and Y is open in X then prove that V is open in X.

OR

12b. Define: Simple Order Relation. If (X, \mathcal{F}) is a topological space, If Y is a subset of X then prove that the collection $\ddagger_Y = \{Y \cap U / U \in \ddagger\}$ is a topology. 13a. Define: Closure of a Set (of a topological space).
Let (X, *I*₁) and (Y, *I*₂) be topological spaces. What is the sub-basis for the product topology on X×Y, Justify your answer with proof.

OR

- 13b. Define: Accumulation Point (of a subset of a topological space)
 Let (X, *J*) be a topological space with topology T on it, then **prove that** the following conditions holds: (i) Ø and X are closed sets. (ii) Arbitrary intersection of closed sets is closed. (iii) Finite union of closed sets is closed.
- 14a. Define: Metrizable Topological Space. Let $(X, \boldsymbol{\mathcal{J}}_X)$ and $(Y, \boldsymbol{\mathcal{J}}_Y)$ be topological spaces, Let f: $(X, \boldsymbol{\mathcal{J}}_X)$ $(Y, \boldsymbol{\mathcal{J}}_Y)$ be a function of topological spaces, then prove that if for every closed set B of Y the set $f^{-1}(B)$ is a closed set in X then f is continuous function.

OR

- 14b. Define: Topological Imbedding
 - (i) Prove that the composition of two continuous functions is a continuous function.

(ii) Let $(X, \boldsymbol{\mathcal{J}}_X)$ and $(Y, \boldsymbol{\mathcal{J}}_Y)$ be topological spaces, Let f: $(X, \boldsymbol{\mathcal{J}}_X)$ $(Y, \boldsymbol{\mathcal{J}}_Y)$ be a continuous function of topological spaces, and let A be a subspace of $(X, \boldsymbol{\mathcal{J}}_X)$ then prove that the restricted function $\mathbf{f}|_A$: A $(Y, \boldsymbol{\mathcal{J}}_Y)$ is continuous.

15a. (i) Define: T₀-Space.
(ii) State the Urysohn Lemma.
Prove that every T₂-Space is T₁-Space.
Give an example of a topological space which is T₀-Space but not a T₁-Space.

OR

- 15b. (i) Prove that every finite point set in a Hausdorff space is closed.
 - (ii) Prove that every Metrizable space is normal.